舊版    ENGLISH

其他

当前位置 : 首頁 > 其他 > 學術活動

Analysis & PDE |Blow-up profiles for the parabolic-elliptic Keller-Segel system in whole space with dimension $n \geq 3$

编辑:wfy 時間:2019年11月13日 访问次数:274

報告人:周茂林 研究員 (南開大學陳省身數學研究所)

時間:20191120日(周三)上午10:00-11:00

地點:工商樓200-9報告廳

摘要:Recently, P. Souplet and M. Winkler [CMP, 2019] studied a simplified parabolic-elliptic Keller-Segel system in $\Omega\subset R^n (n>2)$. They obtained the blow-up profiles $cr^{-2}<U(r)<Cr^{-2}$ under suitable conditions, where $U(x)=\lim_{t\rightarrow T}u(x,t)$. An open problem proposed in this paper is that, the solution admits an exactly profile: $r^2U(r)$ converge to some constant as $r$ goes to zero. In this talk, we mainly discuss how to settle this open problem when the domain is the whole space. 

聯系人:李奇睿(qi-rui.li@zju.edu.cn